Europäischer Maulwurf uns australischer Beutelmull - wie Evolution arbeitet

(05.01.2023) Welche genetischen Veränderungen sind für die Entwicklung phänotypischer Merkmale verantwortlich?

Diese Frage ist nicht immer leicht zu beantworten. Eine neu entwickelte Methode macht die Suche jetzt deutlich einfacher.

Mit seinen mächtigen Grabschaufeln kann sich der europäische Maulwurf problemlos durch das Erdreich wühlen. Gleiches gilt für den in Australien lebenden Beutelmull.

Julius-Maximilians-Universität Würzburg Obwohl die beiden Tierarten weit voneinander entfernt leben, haben sie doch im Laufe der Evolution ähnliche Organe entwickelt – in ihrem Fall für das Graben im Erdboden ideal angepasste Extremitäten.

Von „konvergenter Evolution“ spricht die Wissenschaft in solchen Fällen, wenn Tier-, aber auch Pflanzenarten unabhängig voneinander Merkmale entwickeln, die die gleiche Gestalt und Funktion haben. Beispiele gibt es dafür viele: So besitzen Fische Flossen, genauso wie Wale, die allerdings zu den Säugetieren zählen. Vögel und Fledermäuse verfügen über Flügel, und wenn es darum geht, sich mit Hilfe giftiger Substanzen gegen Angreifer zu wehren, haben viele Lebewesen, von Quallen über Skorpione bis zu Insekten, alle das gleiche Instrument entwickelt: den Giftstachel.

Identische Merkmale trotz fehlender Verwandtschaft

Klar, dass sich Wissenschaftlerinnen und Wissenschaftler weltweit dafür interessieren, welche Veränderungen im Erbgut der jeweiligen Arten dafür verantwortlich sind, dass sich bei ihnen identische Merkmale entwickeln konnten, obwohl unter ihnen keine verwandtschaftlichen Beziehungen bestehen.

Die Suche danach gestaltet sich schwierig: „Solche Merkmale – wir sprechen von Phänotypen – sind natürlich immer in Genomsequenzen kodiert“, sagt der Pflanzenphysiologe Dr. Kenji Fukushima von der Julius-Maximilians-Universität (JMU) Würzburg. Mutationen – also Veränderungen im Erbgut – können die Auslöser für die Entwicklung neuer Merkmale sein.

Allerdings führen genetische Veränderungen selten zu einer phänotypischen Evolution, da die zugrunde liegenden Mutationen weitgehend zufällig und neutral sind. Somit sammeln sich in der extremen Zeitskala, in der sich evolutionäre Prozesse vollziehen, eine gewaltige Menge an Mutationen an, was die Entdeckung phänotypisch wichtiger Veränderungen äußerst schwierig macht.

Neuartige Metrik der molekularen Evolution

Jetzt ist es Fukushima gemeinsam mit seinem Kollegen David D. Pollock von der University of Colorado (USA) gelungen, eine Methode zu entwickeln, die bei der Suche nach den genetischen Grundlagen phänotypischer Merkmale deutlich bessere Ergebnisse erzielt als die bislang verwendeten Methoden. In der aktuellen Ausgabe der Fachzeitschrift Nature Ecology & Evolution stellen sie ihren Ansatz vor.

„Wir haben eine neuartige Metrik der molekularen Evolution entwickelt, mit der sich die Rate der konvergenten Evolution in proteinkodierenden DNA-Sequenzen genau darstellen lässt“, beschreibt Fukushima das wesentliche Ergebnis der jetzt veröffentlichten Arbeit. Diese neue Methode könne auf einer evolutionären Zeitskala von Hunderten von Millionen Jahren aufzeigen, welche genetischen Veränderungen mit den Phänotypen von Organismen verbunden sind. Damit biete sie die Möglichkeit, das Verständnis dafür zu erweitern, wie Veränderungen in der DNA zu phänotypischen Innovationen führen, die eine große Artenvielfalt hervorbringen.

Gewaltiger Datenschatz als Grundlage

Eine zentrale Entwicklung in den Lebenswissenschaften bildet die Grundlage von Fukushimas und Pollocks Arbeit: die Tatsache, dass in den vergangenen Jahren immer mehr Genomsequenzen vieler Lebewesen quer durch die Artenvielfalt entschlüsselt und damit einer Analyse zugänglich gemacht wurden. „Damit wurde es möglich, auf einer makroevolutionären Ebene die Zusammenhänge von Geno- und Phänotypen in großem Maßstab zu untersuchen“, sagt Fukushima.

Da jedoch viele molekulare Veränderungen nahezu neutral seien und sich nicht auf irgendwelche Merkmale auswirken, bestehe bei der Interpretation der Daten häufig die Gefahr einer „falsch-positiven Konvergenz“ – soll heißen: Das Ergebnis sagt einen Zusammenhang zwischen einer Mutation und einem bestimmten Merkmal voraus, der in Wirklichkeit jedoch nicht existiert. Darüber hinaus könnten auch methodische Verzerrungen für solche falsch-positiven Konvergenzen verantwortlich sein.

Zusammenhänge über Millionen von Jahren

„Um dieses Problem zu überwinden, haben wir den Rahmen erweitert und eine neue Metrik entwickelt, die die fehlerbereinigte Konvergenzrate der Proteinevolution misst“, erklärt Fukushima. Damit sei es möglich, die natürliche Selektion von genetischem Rauschen und phylogenetischen Fehlern in Simulationen und realen Beispielen zu unterscheiden. Erweitert um einen heuristischen Algorithmus ermögliche dieser Ansatz die bidirektionale Suche nach Genotyp-Phänotyp-Assoziationen, selbst in Linien, die sich über Hunderte von Millionen Jahren auseinanderentwickelt haben.

Wie gut die von ihnen entwickelte Metrik funktioniert, haben die beiden Wissenschaftler anhand von über 20 Millionen Zweigkombinationen bei Wirbeltiergenen untersucht. In einem nächsten Schritt wollen sie diese Methode auf fleischfressende Pflanzen anwenden. Ziel ist es, die genetischen Grundlagen zu entziffern, die dafür mitverantwortlich sind, dass diese Pflanzen Beute anlocken, fangen und verdauen können.

Plikation

Detecting macroevolutionary genotype– phenotype associations using error- corrected rates of protein convergence. Kenji Fukushima & David D. Pollock. Nature Ecology & Evolution, https://doi.org/10.1038/s41559-022-01932-7



Weitere Meldungen

Die Diversität der Vögelgenome.; Bildquelle: Bilder: Jon Fieldsa. Design: Josefin Stiller.

Mit Algorithmen die Evolution der Vögel besser verstehen

Im Jahr 2014 erschien im Fachjournal „Science“ ein Artikel über den Stammbaum der Vögel, in dem Algorithmen und Supercomputer eine wichtige Rolle für die evolutionsbiologische Forschung für alle Arten von Lebewesen zukam
Weiterlesen

Von der Savanne aufs Sofa: Eine Evolutionsgeschichte der Katze

Von der Savanne aufs Sofa: Eine Evolutionsgeschichte der Katze

Wollen Sie Ihre Katze wirklich verstehen? Dann lernen Sie ihre Vorfahren kennen - von Jonathan B. Losos
Weiterlesen

Frühes Planula-Larvenstadium der Seeanemone Aiptasia (cyanfarbene Kerne und grüne Stachelzellen), das eine Krebspuppe (grün) des Copepoden Tisbe sp. erbeutet; Bildquelle: Ira Mägele und Ulrike Engel

Begann die Evolution der Tiere mit einer räuberischen Lebensweise?

Überraschende Befunde einer Forschungsgruppe um Prof. Dr. Thomas W. Holstein von der Universität Heidelberg zur Entwicklung von Seeanemonen legen nahe, dass die räuberische Lebensweise für die Evolution der Tiere prägend war
Weiterlesen

Die Lederschildkröte (Dermochelys coriacea) kann bis zu zwei Meter groß werden.; Bildquelle: National Seashore, WikimediaCommons

Panzergröße: Wie sich Schildkröten in den letzten 200 Millionen Jahren entwickelten

Internationale Forschende haben die bisher umfänglichste Datensammlung zu Körpergrößen von rezenten und fossilen Schildkröten zusammengestellt
Weiterlesen

Lebendrekonstruktion zweier Keichousaurier; Bildquelle: @Takumi

Einblicke in die sexuelle Entwicklung eines im Meer lebenden Reptils

Fossile Skelette faszinieren Wissenschaftler seit langem als Fenster zur Urzeit. Aber bislang ist wenig über Details zur sexuellen Entwicklung ausgestorbener Lebewesen bekannt
Weiterlesen

Das Kiefer von Dalatias licha (Schokoladenhai). Die unteren Zähne des Hais bilden eine durchgehende Schneidekante, mit der er Stücke aus größeren Tieren herausbeißen kann.; Bildquelle: Manuel Staggl

Kieferformen von 90 Hai-Arten zeigen: Evolution je nach Lebensraum

Analyse mithilfe von Röntgen-Computertomographie und 3D-Rekonstruktionen
Weiterlesen

Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung

Fossilien zeigen Evolutionsgeschichte der Wirbelsäulenentwicklung

Forschende des Museums für Naturkunde Berlin untersuchten die Entwicklung der Wirbelsäule von vierbeinigen Wirbeltieren anhand eines großen Datensatzes moderner und fossiler Wirbeltiere
Weiterlesen

Universität Uppsala

Skandinavische Wölfe tragen viele schädliche Mutationen in sich

In einer neuen wissenschaftlichen Studie haben Forscher der Universität Uppsala gezeigt, dass skandinavische Wölfe rund 100.000 schädliche Mutationen in ihrem Genom tragen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen